Extensions 1→N→G→Q→1 with N=C3 and Q=C22×He3

Direct product G=N×Q with N=C3 and Q=C22×He3
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C3 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C3⋊(C22×He3) = C2×S3×He3φ: C22×He3/C2×He3C2 ⊆ Aut C3366C3:(C2^2xHe3)324,139

Non-split extensions G=N.Q with N=C3 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C3.1(C22×He3) = C22×C32⋊C9central extension (φ=1)108C3.1(C2^2xHe3)324,82
C3.2(C22×He3) = C22×C3≀C3central stem extension (φ=1)36C3.2(C2^2xHe3)324,86
C3.3(C22×He3) = C22×He3.C3central stem extension (φ=1)108C3.3(C2^2xHe3)324,87
C3.4(C22×He3) = C22×He3⋊C3central stem extension (φ=1)108C3.4(C2^2xHe3)324,88
C3.5(C22×He3) = C22×C3.He3central stem extension (φ=1)108C3.5(C2^2xHe3)324,89

׿
×
𝔽